Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Cell Infect Microbiol ; 13: 1178590, 2023.
Article in English | MEDLINE | ID: covidwho-2324451

ABSTRACT

Objective: Ursodeoxycholic acid (UDCA) may reduce susceptibility to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection by downregulating angiotensin-converting enzyme 2 (ACE2), based on recent experimental investigation. This study aimed to determine the potential protective effect of UDCA against SARS-CoV-2 infection in patients with chronic liver disease. Methods: Patients with chronic liver disease receiving UDCA (taking UDCA ≥1 month) at Beijing Ditan Hospital between January 2022 and December 2022 were consecutively enrolled. These patients were matched in a 1:1 ratio to those with liver disease not receiving UDCA during the same period by using a propensity score matching analysis with nearest neighbor matching algorithm. We conducted a phone survey of coronavirus disease 2019 (COVID-19) infection during the early phase of the pandemic liberation (from 15 December 2022 to 15 January 2023). The risk of COVID-19 was compared in two matched cohorts of 225 UDCA users and 225 non-UDCA users based on patient self-report. Results: In the adjusted analysis, the control group was superior to the UDCA group in COVID-19 vaccination rates and liver function indicators, including γ-glutamyl transpeptidase and alkaline phosphatase (p < 0.05). UDCA was associated with a lower incidence of SARS-CoV-2 infection (UDCA 85.3% vs. control 94.2%, p = 0.002), more mild cases (80.0% vs. 72.0%, p = 0.047), and shorter median time from infection to recovery (5 vs. 7 days, p < 0.001). Logistic regression analysis showed that UDCA was a significant protective factor against COVID-19 infection (OR: 0.32, 95%CI: 0.16-0.64, p = 0.001). Furthermore, diabetes mellitus (OR: 2.48, 95%CI: 1.11-5.54, p = 0.027) and moderate/severe infection (OR: 8.94, 95%CI: 1.07-74.61, p = 0.043) were more likely to prolong the time from infection to recovery. Conclusion: UDCA therapy may be beneficial in reducing COVID-19 infection risk, alleviating symptoms, and shortening the recovery time in patients with chronic liver disease. However, it should be emphasized that the conclusions were based on patient self-report rather than classical COVID-19 detection by experimental investigations. Further large clinical and experimental studies are needed to validate these findings.


Subject(s)
COVID-19 , Liver Diseases , Humans , Ursodeoxycholic Acid/therapeutic use , COVID-19 Vaccines , Cholagogues and Choleretics/therapeutic use , SARS-CoV-2 , Liver Diseases/drug therapy
2.
J Pharm Biomed Anal ; 229: 115357, 2023 May 30.
Article in English | MEDLINE | ID: covidwho-2263488

ABSTRACT

Ursodeoxycholic acid has gained increasing attention due to its recent discovery of the preventive effect on SARS-CoV-2 infection. Ursodeoxycholic acid has been included in various pharmacopoeias as an old drug, and the latest European Pharmacopoeia lists nine potential related substances (impurities A∼I). However, existing methods in pharmacopoeias and literature can only quantify up to five of these impurities simultaneously, and the sensitivity is inadequate, as the impurities are isomers or cholic acid analogues lacking chromophores. Herein, a novel gradient RP-HPLC method coupled to charged aerosol detection (CAD) was developed and validated for the simultaneous separation and quantification of the nine impurities in ursodeoxycholic acid. The method proved sensitive and allowed the quantification of the impurities as low as 0.02 %. Relative correction factors of the nine impurities were all within the range of 0.8-1.2 in the gradient mode by optimizing chromatographic conditions and CAD parameters. In addition, this RP-HPLC method is fully compatible with LC-MS due to the volatile additives and high percentage of the organic phase, which can be directly used for the identification of impurities. The newly developed HPLC-CAD method was successfully applied to commercial bulk drug samples, and two unknown impurities were identified by HPLC-Q-TOF-MS. The effect of CAD parameters on the linearity and correction factors was also discussed in this study. Overall, the established HPLC-CAD method can improve the methods in current pharmacopoeias and literature and contributes to understanding the impurity profile for process improvement.


Subject(s)
COVID-19 , Ursodeoxycholic Acid , Humans , Chromatography, High Pressure Liquid/methods , SARS-CoV-2 , Respiratory Aerosols and Droplets , Drug Contamination/prevention & control
3.
J Intern Med ; 293(5): 636-647, 2023 05.
Article in English | MEDLINE | ID: covidwho-2264836

ABSTRACT

BACKGROUND AND AIMS: Studies have demonstrated that reducing farnesoid X receptor activity with ursodeoxycholic acid (UDCA) downregulates angiotensin-converting enzyme in human lung, intestinal and cholangiocytes organoids in vitro, in human lungs and livers perfused ex situ, reducing internalization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell. This offers a potential novel target against coronavirus disease 2019 (COVID-19). The objective of our study was to compare the association between UDCA exposure and SARS-CoV-2 infection, as well as varying severities of COVID-19, in a large national cohort of participants with cirrhosis. METHODS: In this retrospective cohort study among participants with cirrhosis in the Veterans Outcomes and Costs Associated with Liver cohort, we compared participants with exposure to UDCA, with a propensity score (PS) matched group of participants without UDCA exposure, matched for clinical characteristics, and vaccination status. The outcomes included SARS-CoV-2 infection, symptomatic, at least moderate, severe, or critical COVID-19, and COVID-19-related death. RESULTS: We compared 1607 participants with cirrhosis who were on UDCA, with 1607 PS-matched controls. On multivariable logistic regression, UDCA exposure was associated with reduced odds of developing SARS-CoV-2 infection (adjusted odds ratio [aOR] 0.54, 95% confidence interval [CI] 0.41-0.71, p < 0.0001). Among patients who developed COVID-19, UDCA use was associated with reduced disease severity, including symptomatic COVID-19 (aOR 0.54, 95% CI 0.39-0.73, p < 0.0001), at least moderate COVID-19 (aOR 0.51, 95% CI 0.32-0.81, p = 0.005), and severe or critical COVID-19 (aOR 0.48, 95% CI 0.25-0.94, p = 0.03). CONCLUSIONS: In participants with cirrhosis, UDCA exposure was associated with both a decrease in SARS-CoV-2 infection, and reduction in symptomatic, at least moderate, and severe/critical COVID-19.


Subject(s)
COVID-19 , Liver Cirrhosis, Biliary , Humans , Ursodeoxycholic Acid/therapeutic use , COVID-19/complications , Retrospective Studies , SARS-CoV-2 , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy
5.
Biomed Pharmacother ; 150: 113021, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1803596

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute -respiratory syndrome coronavirus 2 (SARS- CoV-2) through interaction of the spike protein (SP) with the receptor-binding domain (RBD) and its receptor, angiotensin converting enzyme 2(ACE2). Repair mechanisms induced following virus infection can restore the protective barrier through wound healing. Then, cells from the epithelial basal layer repopulate the damaged area, followed by cell proliferation and differentiation, as well as changes in gene expression. METHODS: Using Beas-2B cells and SP, we investigated whether ursodeoxycholic acid (UDCA) contributes to restoration of the bronchial epithelial layer. ACE2 expression was measured by RT-PCR and Western blotting. SP-ACE2 interaction was analyzed by flow cytometry and visualized through immunostaining. Cell migration was assessed using single cell path tracking and wound healing assay. RESULTS: Upon ACE2 overexpression in HeLa, HEK293T, and Beas-2B cells following the transfection of pCMV-ACE2 plasmid DNA, SP binding on each cell was increased in the ACE2 overexpression group compared to pCMV-transfected control cells. SP treatment delayed the migration of BEAS-2B cells compared to the control. SP also reduced cell migration, even under ACE2 overexpression; SP binding was greater in ACE2-overexpressed cells than control cells. UDCA interfered significantly with the binding of SP to ACE2 under our experimental conditions. UDCA also restored the inhibitory migration of Beas-2B cells induced by SP treatment. CONCLSION: Our data demonstrate that UDCA can contribute to the inhibition of abnormal airway epithelial cell migration. These results suggest that UDCA can enhance the repair mechanism, to prevent damage caused by SP-ACE2 interaction and enhance restoration of the epithelial basal layer.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Cell Movement , Epithelial Cells/metabolism , HEK293 Cells , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Ursodeoxycholic Acid/pharmacology
6.
PLoS One ; 16(11): e0260451, 2021.
Article in English | MEDLINE | ID: covidwho-1528733

ABSTRACT

The mortality rates of COVID-19 vary widely across countries, but the underlying mechanisms remain unelucidated. We aimed at the elucidation of relationship between gut microbiota and the mortality rates of COVID-19 across countries. Raw sequencing data of 16S rRNA V3-V5 regions of gut microbiota in 953 healthy subjects in ten countries were obtained from the public database. We made a generalized linear model (GLM) to predict the COVID-19 mortality rates using gut microbiota. GLM revealed that low genus Collinsella predicted high COVID-19 mortality rates with a markedly low p-value. Unsupervised clustering of gut microbiota in 953 subjects yielded five enterotypes. The mortality rates were increased from enterotypes 1 to 5, whereas the abundances of Collinsella were decreased from enterotypes 1 to 5 except for enterotype 2. Collinsella produces ursodeoxycholate. Ursodeoxycholate was previously reported to inhibit binding of SARS-CoV-2 to angiotensin-converting enzyme 2; suppress pro-inflammatory cytokines like TNF-α, IL-1ß, IL-2, IL-4, and IL-6; have antioxidant and anti-apoptotic effects; and increase alveolar fluid clearance in acute respiratory distress syndrome. Ursodeoxycholate produced by Collinsella may prevent COVID-19 infection and ameliorate acute respiratory distress syndrome in COVID-19 by suppressing cytokine storm syndrome.


Subject(s)
Actinobacteria/physiology , COVID-19/prevention & control , Gastrointestinal Microbiome , Intestines/microbiology , SARS-CoV-2/physiology , Ursodeoxycholic Acid/metabolism , COVID-19/etiology , COVID-19/pathology , Humans
7.
Sci Rep ; 11(1): 22288, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1517638

ABSTRACT

Numerous repositioned drugs have been sought to decrease the severity of SARS-CoV-2 infection. It is known that among its physicochemical properties, Ursodeoxycholic Acid (UDCA) has a reduction in surface tension and cholesterol solubilization, it has also been used to treat cholesterol gallstones and viral hepatitis. In this study, molecular docking was performed with the SARS-CoV-2 Spike protein and UDCA. In order to confirm this interaction, we used Molecular Dynamics (MD) in "SARS-CoV-2 Spike protein-UDCA". Using another system, we also simulated MD with six UDCA residues around the Spike protein at random, naming this "SARS-CoV-2 Spike protein-6UDCA". Finally, we evaluated the possible interaction between UDCA and different types of membranes, considering the possible membrane conformation of SARS-CoV-2, this was named "SARS-CoV-2 membrane-UDCA". In the "SARS-CoV-2 Spike protein-UDCA", we found that UDCA exhibits affinity towards the central region of the Spike protein structure of - 386.35 kcal/mol, in a region with 3 alpha helices, which comprises residues from K986 to C1032 of each monomer. MD confirmed that UDCA remains attached and occasionally forms hydrogen bonds with residues R995 and T998. In the presence of UDCA, we observed that the distances between residues atoms OG1 and CG2 of T998 in the monomers A, B, and C in the prefusion state do not change and remain at 5.93 ± 0.62 and 7.78 ± 0.51 Å, respectively, compared to the post-fusion state. Next, in "SARS-CoV-2 Spike protein-6UDCA", the three UDCA showed affinity towards different regions of the Spike protein, but only one of them remained bound to the region between the region's heptad repeat 1 and heptad repeat 2 (HR1 and HR2) for 375 ps of the trajectory. The RMSD of monomer C was the smallest of the three monomers with a value of 2.89 ± 0.32, likewise, the smallest RMSF was also of the monomer C (2.25 ± 056). In addition, in the simulation of "SARS-CoV-2 membrane-UDCA", UDCA had a higher affinity toward the virion-like membrane; where three of the four residues remained attached once they were close (5 Å, to the centre of mass) to the membrane by 30 ns. However, only one of them remained attached to the plasma-like membrane and this was in a cluster of cholesterol molecules. We have shown that UDCA interacts in two distinct regions of Spike protein sequences. In addition, UDCA tends to stay bound to the membrane, which could potentially reduce the internalization of SARS-CoV-2 in the host cell.


Subject(s)
Antiviral Agents/metabolism , Drug Repositioning/methods , Lipid Bilayers/metabolism , Molecular Docking Simulation/methods , Phospholipids/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Ursodeoxycholic Acid/metabolism , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Humans , Hydrogen Bonding , Membrane Fusion , Molecular Dynamics Simulation , Protein Binding , Protein Conformation, alpha-Helical , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Ursodeoxycholic Acid/chemistry , Virion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL